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ABSTRACT
Ship hull optimization techniques based on computer-aided design/com-
putational fluid dynamics can effectively enhance the efficiency and sta-
bility of ship designs, with significant application prospects. To enhance
the potential of ship hull optimization, increasing design variable dimen-
sionality is essential, but can cause a significant increase in hydrodynamic
simulations. To reduce simulations required for high-dimensional ship hull
optimization, a new surrogate method, pointwise weighting prediction
variance–high-dimensional model representation (PWPV-HDMR), which
uses pointwise weighting prediction variance (PWPV) to aggregate differ-
ent a priori assumptions, is developed. Moreover, a differential evolution
algorithm is used to identify promising hull design parameters, using the
PWPV-HDMRmodel instead of costly simulation as the fitness function. The
proposed approach is tested on the hydrostatic resistance optimization
of KRISO Container Ship. The results show that PWPV-HDMR outperforms
kriging-HDMR, with a better resistance optimization effect, illustrating the
effectiveness of the PWPV-HDMR-based global optimization approach in
discovering promising ship hull parameters.
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1. Introduction

The study of low-resistance design optimization for ships can effectively improve the efficiency of
ship operation, thereby reducing energy consumption and minimizing pollution. Traditional ship
design optimization typically involves modifying the moulded lines of the mother ship based on a
series of ship model test data (Maruo et al. 1977). This process is often cumbersome, requiring con-
tinuous experimental validation, resulting in high costs, long cycles and limited improvement effects.
With advances in numerical methods and computer performance, numerical simulation has become
a predictivemeans for hydrodynamic performance, accelerating the research on low-resistance design
optimization for ships. This has led to the emergence of a new model for ship design optimization
based on computer-aided design and computational fluid dynamics (CAD/CFD) (Choo et al. 2020;
Nazemian and Ghadimi 2021). As shown in Figure 1, the design optimization provides parameter-
ized variables for themodelling-simulation process, while themodelling-simulation process provides
objective and constraint functions for the design optimization.
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Figure 1. Ship design optimization model based on computer-aided design/computational fluid dynamics (CAD/CFD).

The geometric parameterization and reconstruction of the ship hull are the primary steps in ship
design optimization based on the CAD/CFD model. Various curve and surface modelling methods
have been proposed, including free-form deformation (FFD) (S. Li et al. 2022), parameterized non-
uniform rational B-splines (NURBS) (H. Zhou et al. 2022), geometric blending (Evans et al. 2015),
surface perturbation (Peri, Rossetti, and Campana 2001) and shifting methods (S. Li et al. 2022). In
this article, FFD technology is used for the parametric expression and reconstruction of the ship’s
hull shape. This choice is attributed to the ability of FFD technology to facilitate global or local defor-
mation of the ship’s shape by adjusting the control volume, thereby providing a convenient means to
explore more possibilities for the hull shape.

During the design optimization of the ship hull, to enhance the optimization potential, it is neces-
sary to appropriately increase the dimensionality and variation range of design variables. However, as
the dimensionality increases, the number of required ship hydrodynamic simulations rises sharply,
rendering the design optimization impractical. Constructing surrogate models to fit the relationship
between inputs and outputs as an alternative to time-consuming CFD simulations has become an
effective approach to address these challenges (Diez et al. 2019; Feng et al. 2018; F. Huang, Wang,
and Yang 2016; Jeong and Kim 2013; Lin et al. 2021; Wei et al., “Sensitivity Analysis,” 2019; Q. Zhou
et al. 2017). For example, Wan et al. (2022) used a fourth-order polynomial response surface (PRS)
model in the integrated design of the hull form for underwater surface vessels to establish a surro-
gate model for hydrodynamic performance. Kim et al. (2011) used the kriging surrogate model to
fit the relationship between the hull form parameters of the 60 series and wave resistance within a
specified speed range. Tian et al. (2021) used the radial basis function (RBF) model to establish the
relationship between nine design parameters of the medical semi-submersible platform and the hull
structural weight, heave response and roll response of the hull. Wei et al. (“Hull Form,” 2019) used
the polynomial chaos expansion (PCE) model to establish the relationship between the bow shape
parameters of the KRISO Container Ship (KCS) model and the ship energy efficiency design index
(EEDI). Feng et al. (2018) used the support vector regression (SVR) model to construct the rela-
tionship between the hull parameters of an offshore aquaculture vessel and the resistance and the
circumferential non-uniformity of the wave field. However, existing research on ship hull parameters
design has primarily used surrogate modelling methods to address lower-dimensional optimization
problems, finding optimal solutions in local regions.Meanwhile, traditional surrogatemodels used in
ship hull form optimization still face challenges of low modelling accuracy and high computational
costs in high-dimensional spaces.

To overcome these limitations, this article proposes a global optimization approach based on
a high-dimensional surrogate model using the Cut-HDMR framework, referred to as pointwise
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weighting prediction variance–high-dimensional model representation (PWPV-HDMR). The Cut-
HDMR framework is a common solution for high-dimensional problems (Chen et al. 2019; Rabitz
and Aliş 1999; Sobol’ 2003; Zhang, Qiao, and Wu 2024). Preliminary research suggests that using
different traditional surrogate models to construct the basis functions of the Cut-HDMR framework
can have a significant impact on the predictive performance of the final model (Chen et al. 2019; Luo,
Li, and Wang 2021; Sobol’ 2003; Zhang et al. 2022). Specially, because of the black-box nature of the
relationship between ship hull parameters and hydrodynamic performance, and the costly nature of
acquiring information that describes the relationship between the two, engineers often find it chal-
lenging to determine which traditional surrogate model is the optimal choice for constructing the
basis functions of the Cut-HDMR framework (Z. Huang et al. 2015; Shan and Wang 2009; H. Wang,
Tang, and Li 2011). Furthermore, considering that many researchers have mentioned that a more
accurate surrogate model can be obtained by combining multiple surrogate models (Ren et al. 2022;
L.Wang et al. 2021; X.Wang et al. 2023), thesemethods are rarely applied to address high-dimensional
problems in these studies. Therefore, the proposed method aggregates three traditional surrogates to
reduce the risk of using inappropriate surrogatemodels during the construction of the basis function.
To calculate the weighting coefficients of these surrogate models, the true responses at nearby sample
points are used to estimate the prediction variance at non-sampling points. Moreover, the differen-
tial evolution (DE) algorithm is used to identify promising hull design parameters, where the fitness
values assigned to the population are provided by the constructed PWPV-HDMR. The effectiveness
of the promising ship hull parameters thus obtained is validated through simulation experiments of
KCS static water towing.

The remaining sections of this article are organized as follows. Section 2 provides a detailed
description of the PWPV-HDMRmethod. Section 3 compares the predictive performance of PWPV-
HDMR and individual Cut-HDMR models. Section 4 details the parameterization methods and
simulation settings for KCS static water towing resistance. Section 5 explores promising ship hull
parameters and validates their consistency with simulation results. Finally, Section 6 concludes the
article.

2. Pointwise weighted combination high-dimensional surrogate model based on
prediction variance: PWPV-HDMR

2.1. High-dimensionalmodel representation (HDMR)

The HDMR method decomposes high-dimensional problems into a series of lower-dimensional
problems to be solved. Its general form is expressed as follows (Chen et al. 2019):

f (X) = f0 +
d∑

i=1
fi(xi) +

∑
1≤i≤j≤d

fij(xi, xj) +
∑

1≤i<j<k≤d

fijk(xi, xj, xk) + . . .

∑
1≤i<j<...<r≤d

fij(xi, xj, . . . xr) + · · · + f12···d(x1, x2, · · · , xd) (1)

where the d-dimensional vector X = [x1, x2, · · · xd]T ∈ Rd represents the input variables of the
model; f (X) is the output value of the high-dimensional function; f0 is the constant term, known as
the zero-order function; fi(xi) indicates the contribution to the output when only variable xi is active,
known as the first-order basis function; fij(xi, xj) represents the contribution to the output when
variables xi and xj are coupled, known as the second-order basis function; and f12···d(x1, x2, · · · , xd)
represents the contribution to the output when all variables act together.

Cut-HDMR decomposes the original function into the sum of functions on cutting lines, cutting
planes and cutting hyperplanes passing through a given point x0. This point x0 = (x01, x

0
2, · · · , x0d) is

typically chosen at the centre of the design space and is commonly referred to as the ‘cutting centre’
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of the high-dimensional model. The expressions for the various-order functions in Cut-HDMR are
as follows (Chen et al. 2019):

f0 = f (x0) (2)

fi(xi) = f (xi, xi0) − f0 (3)

fij(xi, xj) = f (xi, xj, x
ij
0) − fi(xi) − fj(xj) − f0 (4)

fijk(xi, xj, xk) = f (xi, xj, xk, x
ijk
0 ) − fij(xi, xj) − fik(xi, xk)

− fjk(xj, xk) − fi(xi) − fj(xj) − fk(xk) − f0 (5)

...

f1···d(x1, . . . , xd) = f (x) − f0 −
∑
i
fi(xi) −

∑
ij

fij(xi, xj) − · · · (6)

where f0 is the response value of point x0; xi0 represents the cutting centre point vector without the
ith dimension; and xij0 indicates the cutting centre point vector without dimensions i, j. Each first-
order basis function fi(xi) can be obtained along the xi-axis passing through the centre point x0, and
each second-order basis function fij(xi, xj) can be obtained on the plane passing through the centre
point x0 and xi, xj axes. For a complex system, higher-order couplings between variables are often
relatively small in practice (Liu et al. 2018). Therefore, when using Cut-HDMR, the higher-order
basis functions in equations are generally negligible.

The preliminary research suggests that using different traditional surrogate models to construct
the basis functions of the HDMR framework can have a significant impact on the predictive per-
formance of the final model (Z. Huang et al. 2015; Shan and Wang 2009; H. Wang, Tang, and Li
2011). However, the challenge arises in selecting the most suitable surrogate model, owing to a short-
age of adequate prior information describing the relationship between inputs and outputs. Therefore,
instead of selecting a traditional surrogate arbitrarily to construct basis functions, this article proposes
a method to aggregate multiple surrogate models, to leverage the strengths of each model.

2.2. Pointwise weighted prediction variance–high-dimensional surrogatemodel
(PWPV-HDMR)

To construct promising basis functions of PWPV-HDMR, three traditional surrogate models are
used. The PRS surrogatemodel is characterized by its simple construction and high accuracy in linear
fitting. The kriging surrogate model excels in both global and local fitting accuracy. The SVR surro-
gate model is adept at handling nonlinear problems and exhibits good generalization capabilities. In
this study, the basis functions of PWPV-HDMR are constructed using a weighted average of these
three sub-surrogate models. It is expressed as follows:

f̂ (X) = f0 +
d∑

i=1
f̂i(xi) +

∑
1≤i≤j≤d

f̂ij(xi, xj)

= f0 +
d∑

i=1

M∑
t=1

wt
i f̂
t
i (xi) +

∑
1≤i≤j≤d

M∑
t=1

wt
ijf̂

t
ij(xi, xj) (7)

where t represents the tth sub-surrogate model, and wt
i is the weighting coefficient, representing the

relative contribution rate of each sub-surrogatemodel. To satisfy the unbiased condition, it is required
that the sum of these weighting coefficients equals 1.
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An assumption used to calculate the weighting coefficient is that if a sub-surrogate model has
less prediction variance at a certain location, its weighting coefficient should be larger, and if its pre-
dicted value deviates further from the true response, its weighting coefficient should be smaller. Since
each sub-surrogate model approaches the true response to different extents in different regions, their
weighting coefficients need to be calculated with reference to position to achieve better modelling
accuracy. Moreover, considering that the true responses at non-sampling points are unknown, the
responses of nearby sample points are used as an estimation. Based on this assumption, the predic-
tion variance σ 2

t (x̂) of the tth sub-surrogate model f̂t(x) at non-sampling point x̂ can be expressed
as:

σ 2
t (x̂) = 1

v

v∑
h=1

[(y(xh) − ŷt(xh)]2 (8)

where p1 = {x1, x2, · · · , xv} denotes the v nearest sample points to the non-sampling point x̂,
{y(x1), y(x2), · · · , y(xv)} is the true response values of these v sample points, and {ŷ′

t(x1), ŷ′
t(x2), · · · ,

ŷ′
t(xv)} comprises values predicted by the validation surrogate model f̂ ′t (x) of the tth sub-surrogate
model f̂t(x) at these v sample points. The sample points in p1 are selected through the following
conditions:

D = {||x̂ − xi|| |xi ∈ N} (9)

p1 = {xi| ||x̂ − xi|| ∈ minv(D) and xi ∈ N} (10)

whereN = {x1, x2, · · · , xn} is the training set used to construct sub-surrogate models f̂t(x), and p2 =
{xi|xi /∈ p1 and xi ∈ N} is used to construct the validation surrogatemodels f̂ ′t (x) of the sub-surrogate
models f̂t(x). The value of v is empirically chosen. Considering that each basis function uses a small
number of sample points, v is typically selected as 1 or 2. In this article, the following formulae were
used to choose the v value: {

v = 2, D∗
3 − D∗

2 ≥ D∗
2 − D∗

1
v = 1, D∗

3 − D∗
2 < D∗

2 − D∗
1

(11)

whereD∗
n is the Euclidean distance between the nth closest sample points and the non-sampling point

x̂. D∗
3 − D∗

2 ≥ D∗
2 − D∗

1 means that D∗
2 is closer to D

∗
1 than D∗

3, and both the first and second closest
sample points were used to estimate the non-sampling point x̂. D∗

3 − D∗
2 < D∗

2 − D∗
1 means that D∗

2
is closer to D∗

3 than D∗
1, and only the closest sample points were used to estimate the non-sampling

point x̂.
Based on the above assumptions and formulae, the calculation of the pointwise weighting coeffi-

cient is expressed as follows:

wt(x̂) =
1

σ 2
t (x̂)

M∑
i=t

1
σ 2
t (x̂)

(12)

whereM is the number of sub-surrogate models in the ensemble model. After calculating the weight-
ing coefficients wt(x) of all sub-surrogate models at the non-sampling point x̂, the predicted value at
point x̂ can be expressed as:

ŷe(x̂) =
M∑
t=1

wt(x̂)f̂t(x̂) (13)

The specific modelling process of PWPV-HDMR is illustrated in Figure 2, and the detailed steps
are implemented as follows.
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• Step 1. Generation of cutting centre point x0: Select the centre point x0 = (x01, x
0
2, · · · , x0d) of the

design space as the cutting centre point for Cut-HDMR and evaluate the corresponding response
value f0.

• Step 2. Construction of first-order approximation basis function f̂i(xi): First, obtain the
boundary points xUi , x

L
i on the axis xi and evaluate the corresponding response values

fi(xUi , x
i
0), fi(x

L
i , x

i
0). Then, check the linearity of the first-order approximation function. If∥∥∥ fi(xUi ,x

i
0)−fi(xLi ,x

i
0)

xUi −xLi
(x0i − xLi ) + fi(xLi ) − fi(x0)

∥∥∥/||fi(x0)|| is less than ε1, where ε1 is a small thresh-
old used to determine the nonlinearity of the function, fi(xi) is considered to be linear. In this case,
a linear regression model f̂i(xi) = axi + b is established using the existing sample points. Other-

wise, construct the first-order approximation function f̂i(xi) =
M∑
t=1

wt
i f̂
t
i (xi) through the DIviding

RECTangles (DIRECT) adaptive sampling method, and assess the convergence of f̂i(xi). If it con-
verges, stop the modelling process for this basis function and proceed to the next step. Otherwise,
perform sequential sampling and modelling until the constructed ith approximation function
f̂i(xi) converges.

• Step 3. Construction of remaining first-order approximation basis function f̂j(xj): Repeat Step
2 to construct surrogate models for all remaining first-order basis functions. At this point, the
first-order part of the model has been constructed.

• Step 4.Determination ofwhether the second-order part of themodel exists: Calculate the response
values f (xU) and f (xL) at the upper and lower bounds xU and xL of the design space. If both∥∥∥∥∥
[
f0 +

d∑
i
f̂i(xUi ) − f (xU)

]
/f (xU)

∥∥∥∥∥ and

∥∥∥∥∥
[
f0 +

d∑
i
f̂i(xLi ) − f (xL)

]
/f (xL)

∥∥∥∥∥ are less than ε2, where

the typical value for ε2 is often 0.1, then the second-order part does not exist, and the model
construction is complete. Otherwise, proceed to Step 5.

• Step 5. Determination and construction of second-order approximation basis function f̂i,j(xi, xj):
First, select a second-order sample point (xi, xj, x

ij
0) and evaluate the corresponding response value

f (xi, xj, x
i,j
0 ). If the value of f0 + f̂i(xi) + f̂j(xj) is close to f (xi, xj, x

i,j
0 ), then fi,j(xi, xj) is considered

not to exist, and modelling for it is halted. Otherwise, using x0 and the sample points collected
during the construction of first-order basis functions f̂i(xi) and f̂j(xj) as initial sample points,
employ the DIRECT adaptive sampling method to construct the corresponding second-order

approximation basis function f̂i,j(xi, xj) =
M∑
t=1

wt
ijf̂

t
ij(xi, xj) until convergence.

• Step 6. Construction of remaining second-order approximation basis function f̂k,l(xk, xl): Repeat
Step 5 to construct surrogate models for all remaining second-order basis functions. Finally, com-
bine the first-order and second-order basis functions with the response value at the centre cutting
point, and the resulting model is the desired PWPV-HDMRmodel.

3. Numerical study

3.1. Analysis of case results

In this study, 15 numerical test cases were used to assess the performance of the PWPV-HDMR
model across different dimensionalities, as outlined in Tables A1–A4 in Appendix A. The evaluation
includes a comparison with three individual cut-HDMR models, i.e. kriging-HDMR (Ji et al. 2022),
PRS-HDMR (Zhao 2018) and SVR-HDMR (G. Li et al. 2017), as well as the kriging model. In the
subsequent discussion, the term basic HDMRs refers to the kriging-HDMR, PRS-HDMR and SVR-
HDMR models. For each model, to conduct a more comprehensive evaluation and a more robust
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Figure 2. Flowchart of the pointwise weighting prediction variance–high-dimensional model representation (PWPV-HDMR)
model. DIRECT = DIviding RECTangles.

significance analysis, 1000 validation points were used to assess the predictive performance through
four error metrics: the coefficient of determination (R2), relative root mean square error (RRMSE),
relativemaximumabsolute error (RMAE) and relative average absolute error (RAAE). The expression
for the relative improvement of the PWPV-HDMRmodel compared to other models is as follows:

Relative improvementother =
(
1 − errPWPV−HDMR

errother

)
× 100% (14)

where err(·) is one of the four error metrics mentioned above, and the subscript ‘other’ represents the
four surrogatemodels other than the PWPV-HDMRmodel. In addition, the number of sample points
used in constructing the model is recorded as ‘NOP’, with the number following the plus sign indi-
cating the sample points used to validate or construct second-order components of the Cut-HDMR
models. Both PWPV-HDMR and basic HDMR models use the DIRECT adaptive sampling method
to obtain new points. Sampling stops when the relative error between the predicted and true values
of new points is less than 1%. The sample points used to construct the kriging model are obtained
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Figure 3. Modelling accuracy and relative improvement of the pointwise weighting prediction variance–high-dimensional model
representation (PWPV-HDMR) (30 dimensions): (a) function no. 10; (b) function no. 11; (c) function no. 12. HDMR = high-
dimensional model representation; PRS = polynomial response surface; SVR = support vector regression; R2 = coefficient of
determination; RRMSE = relative root mean square error; RMAE = relative maximum absolute error; RAAE = relative average
absolute error.

through the optimized Latin hypercubemethod, with the same number as the HDMRmodels. Tables
1 and 2 show themodelling accuracy results for 30 and 40 dimensions, while a more intuitive analysis
of the comparative results is demonstrated in Figures 3 and 4.

From the histogram in Figure 3, it can be observed that the modelling accuracy of the PWPV-
HDMR model is the best in cases 10 and 11, while the results of the kriging model are consistently
the worst in cases 10 and 12. Among the three basic HDMR models, kriging-HDMR performs the
best in case 12, PRS-HDMR excels in case 11 and SVR-HDMR performs the best in case 10. This
indicates that these three models have their strengths and weaknesses, justifying the significance of
composing a combined surrogate model.

The line chart in Figure 3 represents the improvement percentage of the PWPV-HDMR model
relative to the other four models. It can be observed that: (1) In case 12, the SVR-HDMR model and
the PWPV-HDMR model perform the best, with significantly higher accuracy than the other two
basic HDMR models, which means that the PWPV-HDMR model clearly learns the characteristics
of SVR-HDMR, achieving better results than the other models. (2) In cases 10 and 11, when the
differences in accuracy among the three basic HDMRmodels are relatively small, the PWPV-HDMR
model achieves optimal predictive results.
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Figure 4. Modelling accuracy and relative improvement of the pointwise weighting prediction variance–high-dimensional model
representation (PWPV-HDMR) (40 dimensions): (a) function no. 13; (b) function no. 14; (c) function no. 15. HDMR = high-
dimensional model representation; PRS = polynomial response surface; SVR = support vector regression; R2 = coefficient of
determination; RRMSE = relative root mean square error; RMAE = relative maximum absolute error; RAAE = relative average
absolute error.

Table 1. Comparative results of the modelling accuracy (30 dimensions).

Function Surrogates R2 RRMSE RMAE RAAE NOP

10 PWPV-HDMR 9.96E-01 6.12E-02 1.67E-01 4.88E-02 181+ 2
Kriging-HDMR 9.56E-01 2.09E-01 5.00E-01 1.83E-01
PRS-HDMR 6.16E-01 6.18E-01 1.33E+00 5.65E-01
SVR-HDMR 9.95E-01 6.92E-02 1.64E-01 5.99E-02
Kriging −6.34E+01 8.02E+00 1.14E+01 7.96E+00 183

11 PWPV-HDMR 9.56E-01 2.10E-01 1.43E+00 1.55E-01 181+ 3917
Kriging-HDMR 9.10E-01 3.01E-01 3.23E+00 1.38E-01
PRS-HDMR 9.37E-01 2.51E-01 1.21E+00 1.95E-01
SVR-HDMR 7.59E-01 4.90E-01 2.77E+00 3.57E-01
Kriging 8.97E-01 3.21E-01 3.05E+00 2.28E-01 4098

12 PWPV-HDMR 10.00E-01 5.00E-05 1.36E-04 4.40E-05 121+ 2
Kriging-HDMR 10.00E-01 5.00E-05 1.36E-04 4.40E-05
PRS-HDMR 9.99E-01 2.73E-02 1.15E-01 2.18E-02
SVR-HDMR 9.36E-01 2.53E-01 4.92E-01 2.38E-01
Kriging 8.14E-01 4.31E-01 8.49E-01 4.06E-01 123

Note: Best results are shown in bold; worst results in italic.
PWPV-HDMR = pointwise weighting prediction variance–high-dimensional model representation; HDMR = high-dimensional
model representation; PRS = polynomial response surface; SVR = support vector regression; R2 = coefficient of determina-
tion; RRMSE = relative root mean square error; RMAE = relative maximum absolute error; RAAE = relative average absolute
error; NOP = number of sample points.
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Table 2. Comparative results of the modelling accuracy (40 dimensions).

Function Surrogates R2 RRMSE RMAE RAAE NOP

13 PWPV-HDMR 9.97E-01 5.87E-02 1.58E-01 4.87E-02 321+ 2
Kriging-HDMR 9.58E-01 2.04E-01 4.06E-01 1.83E-01
PRS-HDMR 5.14E-01 6.95E-01 1.25E+00 6.42E-01
SVR-HDMR 9.95E-01 6.72E-02 1.42E-01 6.01E-02
Kriging −8.57E+01 9.31E+00 1.30E+01 9.25E+00 323

14 PWPV-HDMR 8.82E-01 3.43E-01 7.62E-01 2.72E-01 281+ 3122
Kriging-HDMR 8.16E-01 4.28E-01 2.46E+00 2.15E-01
PRS-HDMR 8.77E-01 3.51E-01 2.34E+00 2.13E-01
SVR-HDMR 7.07E-01 5.41E-01 3.49E+00 3.94E-01
Kriging 8.20E-01 4.24E-01 5.77E+00 2.65E-01 3403

15 PWPV-HDMR 10.00E-01 6.27E-06 1.59E-05 5.69E-06 161+ 2
Kriging-HDMR 10.00E-01 6.27E-06 1.59E-05 5.69E-06
PRS-HDMR 9.54E-01 2.15E-01 3.99E-01 2.07E-01
SVR-HDMR 9.19E-01 2.84E-01 5.45E-01 2.72E-01
Kriging 3.38E-01 8.13E-01 1.63E+00 7.80E-01 163

Note: Best results are shown in bold; worst results in italic.
PWPV-HDMR = pointwise weighting prediction variance–high-dimensional model representation; HDMR = high-dimensional
model representation; PRS = polynomial response surface; SVR = support vector regression; R2 = coefficient of determina-
tion; RRMSE = relative root mean square error; RMAE = relative maximum absolute error; RAAE = relative average absolute
error; NOP = number of sample points.

From the histogram and line chart in Figure 4, it can be observed that the PWPV-HDMR model
performs the best in case 13, shows similar performance to the kriging-HDMRmodel in case 15 and
maintains the optimal overall ranking in case 14.

In general, in each case, there is at least onewell-performing basicHDMRmodel, and the improve-
ment of PWPV-HDMR relative to these models is much smaller than that of other models. It is
noteworthy that these models vary for each case, demonstrating the ability of the PWPV-HDMR
model to learn and surpass promising basic HDMR models when facing different problems. The
results and analysis for the 10-dimensional and 20-dimensional cases are provided in Appendix B,
leading to similar conclusions.

3.2. Significance analysis

In this subsection, significance analysis of the results will be conducted from two aspects: average
ranking differences and impact of dimensions. Table 3 presents the average ranking of model pre-
dictive performance for different test cases. It can be seen that the overall average ranking of the
PWPV-HDMR model is the highest, while the average rankings of kriging-HDMR, PRS-HDMR,
SVR-HDMR and the kriging model decrease successively.

In this article, the post-hocNimenyi testingmethod (significance levelα = 0.05) is used to analyse
the significance of average ranking differences among the five surrogate models on the numerical test
cases, as shown in Table 4. Figure 5 presents the corresponding heatmap for significance analysis. In
the figure, the greater the number of ‘∗’ symbols, the more significant the difference between the two
surrogate models. It can be observed that PWPV-HDMR exhibits significant differences in predictive
performance compared to the other four surrogatemodels, with particularly pronounced distinctions
from PRS-HDMR, SVR-HDMR and kriging models. Furthermore, the significance of differences
among the three basic HDMR models is not substantial. Except for the SVR-HDMR model, there
is a significant difference in the performance between the kriging model and the other basic HDMR
models.

From Tables A1–A4 (Appendix A), it is evident that cases 1, 6, 10 and 13, and cases 3, 8, 11 and
14, differ only in dimensions. As illustrated in Figure 6, to further investigate the influence of dimen-
sions on model accuracy, a line chart depicting the improvement in accuracy of the PWPV-HDMR
model as dimensions vary, relative to the other fourmodels, is presented. The graphs illustrate that the
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Table 3. Average ranking of models for different test cases.

Function PWPV-HDMR Kriging-HDMR PRS-HDMR SVR-HDMR Kriging

1 (10D) 1.75 3 4 1.25 5
2 (10D) 1.5 2.75 3.25 4.25 3.25
3 (10D) 1.25 4 2.25 2.5 5
4 (10D) 1.25 3 2 4.5 4.25
5 (10D) 1.125 1.875 3 4 5
6 (20D) 1.25 3 4 1.75 5
7 (20D) 1 2 3 4 5
8 (20D) 1 3 2.25 5 3.5
9 (20D) 2 3 1 4 5
10 (30D) 1.25 3 4 1.75 5
11 (30D) 1.5 3 2 4.5 4
12 (30D) 1.5 1.5 3 4 5
13 (40D) 1.25 3 4 1.75 5
14 (40D) 1.75 3.25 1.75 4.75 3.5
15 (40D) 1.5 1.5 3 4 5
Average 1.3917 2.7250 2.8333 3.4667 4.5667

Note: PWPV-HDMR = pointwise weighting prediction variance–high-dimensional model representation; HDMR = high-
dimensional model representation; PRS = polynomial response surface; SVR = support vector regression.

Figure 5. Heatmap of the significance of differences among the five surrogate models. PWPV-HDMR = pointwise weighting pre-
diction variance–high-dimensional model representation; HDMR = high-dimensional model representation; PRS = polynomial
response surface; SVR = support vector regression.

relative improvements of the PWPV-HDMRmodel remain relatively constantwith increasing dimen-
sions. Furthermore, through a one-way analysis of variance (ANOVA) (significance level α = 0.05),
p1 = 0.999 and p2 = 0.846 were obtained. Therefore, it can be concluded that the degree of improve-
ment of the PWPV-HDMRmodel relative to the other four models is not significantly related to the
dimensionality.
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Table 4. p-Values for the significance test of the differences among the five
surrogate models.

i Hypothesis pi-Value

1 PWPV-HDMR vs Kriging-HDMR 8.21E-02
2 PWPV-HDMR vs PRS-HDMR 3.77E-02
3 PWPV-HDMR vs SVR-HDMR 1.00E-03
4 PWPV-HDMR vs Kriging 1.00E-03
5 Kriging-HDMR vs PRS-HDMR 9.00E-01
6 Kriging-HDMR vs SVR-HDMR 4.16E-01
7 Kriging-HDMR vs Kriging 5.93E-03
8 PRS-HDMR vs SVR-HDMR 5.86E-01
9 PRS-HDMR vs Kriging 1.57E-02
10 SVR-HDMR vs Kriging 4.52E-01

Note: PWPV-HDMR = pointwise weighting prediction variance–high-
dimensional model representation; HDMR = high-dimensional model
representation; PRS = polynomial response surface; SVR = support vector
regression.

Figure 6. Relative improvement of the pointwise weighting prediction variance–high-dimensional model representation (PWPV-
HDMR) with changing dimensions: (a) comparison 1; (b) comparison 2. HDMR = high-dimensional model representation;
PRS = polynomial response surface; SVR = support vector regression; Dim = dimensions.

4. CAD/CFD process for hydrostatic resistance optimization of KCSmodels

4.1. Basic information on themother ship

The KCS, characterized by a bulbous bow, is a standard modern 3600 TEU (twenty-foot equivalent
unit) container ship. It exhibits distinct flow-field characteristics at the stern, making it suitable for
flow-field analysis and the validation of CFD technology. Various data and experimental results for
the KCS can be obtained from Denmark’s FORCE Technology company. The main parameters of
the KCS are presented in Table 5, and the complete geometric model is shown in Figure 7(a). In this
article, the primary focus of the research is on the resistance of the KCS in a towed state in calmwater,
with a design speed of 24 knots corresponding to a Froude number of 0.26. In this scenario, the ship’s
propeller structure does not provide propulsion and is omitted. In addition, to facilitate the geometric
deformation reconstruction and parameterized design of the hull, simplifications have been made in
the area around the propeller shaft. The scaled-down model after these simplifications is depicted in
Figure 7(b).
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Figure 7. Geometric model of the KRISO Container Ship (KCS): (a) full geometric model; (b) scaled-down and simplified model.

Table 5. Main particulars of the KRISO Container Ship (KCS).

Scale 1.000 1/31.599

Length between perpendiculars (LBP) 230.0m 7.2786m
Maximum beam of waterline (BWL) 32.2m 1.0190m
Depth (D) 19.0m 0.6013m
Draft (T) 10.8m 0.3418m
Displacement volume (∇) 52,030 m3 1.6490 m3

Wetted surface area without rudder (S) 9539 m2 9.55275 m2

Longitudinal centre of buoyancy (LCB) (%LBP) 48.52 48.52
Longitudinal centre of gravity (LCG) (from stern) 111.6m 3.532m
Moment of inertia (Kxx/B) 0.40 0.40
Moment of inertia (Kyy/LBP ,Kzz/LBP) 0.25 0.25
Design speed (U) 24.0 knots 2.196m/s
Fn (based on LBP) 0.26 0.26

4.2. Parameterized design of the KCS using the FFDmethod

The FFD technique (Sederberg and Parry 1986) is a highly flexible geometric reconstruction method
that allows for the free deformation of entities of arbitrary geometric shapes. To discretize the hull
surface into the FFD control body, the KCS geometric file is converted into the STereoLithography
(STL) format, representing the hull surface as a discrete set of triangular facets, as shown in Figure 8.
Considering the influence of various sections of the hull shape onwave resistance, frictional resistance
and viscous pressure resistance formedium- to high-speed vessels, a parameterization of the FFDwas
carried out to discretize the design space. This includes deformations in five different directions: hull
length (Veritas 2009), design waterline width (Meng et al. 2010) and bilge width (Thiagarajan and
Braddock 2010) in three global directions, as well as the bulbous bow (Mahmood and Huang 2012)
and stern (Park and Chun 2009) in two local directions. Collectively, these are referred to as design
parameters. Each design parameter consists of six parameter variables, named controlled parame-
ters. Consequently, the hull shape reconstruction involves a total of 30 design variables, making it
a high-dimensional problem with 30 dimensions. Figure 9 illustrates the positions of the controlled
parameters in the global direction.

In this article, the FFD reconstruction of the shipmodel is accomplished through a design program
written in the C# language, and the specific operational process is illustrated in Figure 10. It should be
emphasized that during the deformation process, adjustments are first made in two local directions,
followed by deformations in three global directions. This sequence is designed to prevent significant
relative displacement of the ship’s region contained in the control body used for local deformation
after global deformation.A comparison between the local and global control bodies is shown in Figure
11, with specific parameters detailed in Table 6.

To ensure that the ship model meets preliminary design and feasibility requirements after defor-
mation, the range of values for the 30 design variables was determined using the displacement transfer
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Figure 8. STereoLithography file of the KRISO Container Ship (KCS) model.

Figure 9. Controlled parameter positions in the global directions.

Figure 10. Flowchart of the free-form deformation (FFD) reconstruction of the ship model.

method, curve feature constraints and practical conditions, as presented in Table 7. In this table, the
controlled parameters for the design parameters in the global controlled area direction share the same
names. The numerical values in the value range column of the table signify that when the controlled
parameter is set to 0.01, it represents a deformation size of 1% of the total length of the hull.
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Figure 11. Comparison between the global and local control bodies (global: control body 1; local: control bodies 2 and 3).

Table 6. Parameters of control bodies.

Control body Axial Minimum Maximum No. of control points Control area

Control body 1 X −0.2101m 7.0685m 7 Global
Y −0.4822m 0.4822m 7
Z −0.3238m 0.4317m 15

Control body 2 X −0.2095m 0.1171m 7 Bulbous bow
Y −0.0708m 0.0708m 7
Z −0.3238m −0.0138m 7

Control body 3 X 6.2292m 7.0685m 7 Stern part
Y −0.4822m 0.4822m 7
Z −0.3238m 0.0344m 7

Table 7. Range of values for controlled parameters.

Control body Controlled area Design parameters Controlled parameters Value range

Control body 1 Global Hull length Bow part [−0.005,0.002]
Entrance part [−0.01,0.01]
Forward shoulder part [−0.01,0.01]
After shoulder part [−0.01,0.01]
Run part [−0.01,0.01]
Stern part [−0.005,0.005]

Designed waterline width Bow part [−0.01,0.01]
Entrance part [−0.01,0.01]
Forward shoulder part [−0.01,0.01]
After shoulder part [−0.01,0.01]
Run part [−0.01,0.01]
Stern part [−0.01,0.01]

Bilge width Bow part [−0.01,0.01]
Entrance part [−0.01,0.01]
Forward shoulder part [−0.01,0.01]
After shoulder part [−0.01,0.01]
Run part [−0.01,0.01]
Stern part [−0.01,0.01]

Control body 2 Local Bulbous bow Foremost�x [−0.005,0.003]
Foremost�y [−0.01,0.01]
Foremost�z [−0.004,0.003]
Width�y [−0.005,0.005]
Bottom�y [−0.005,0.01]
Bottom�z [−0.005,0.005]

Control body 3 Local Stern part Stern closure plate�x [−0.01,0.01]
Front lower end�y [−0.01,0.01]
Front lower end�z [−0.006,0.006]
Front upper end�y [−0.01,0.01]
Rear upper end�y [−0.01,0.01]
Rear upper end�z [−0.006,0.006]
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Figure 12. Comparison of the bulbous bow before and after deformation: (a) foremost �x; (b) foremost �y; (c) foremost �z; (d)
width�y; (e) bottom�y; (f ) bottom�z.

Table 8. Example values for controlled parameters of the bulbous bow.

Foremost�x Foremost�y Foremost�z Width�y Bottom�y Bottom�z

Bulbous bow 0.001 0.001 0.001 0.001 0.001 0.001

Using the bulbous bow as an example of deformation, the values of its controlled parameters are
adjusted as shown in Table 8. The comparison of the bulbous bow before and after deformation is
illustrated in Figure 12, where the black points represent the control points after deformation and the
light-colored surfaces depict the model after deformation. The deformation control process for the
remaining four sections of design parameters is similar to that of the bulbous bow. Therefore, this
article will achieve the parameterized design of the KCS by adjusting the values of the 30 controlled
parameters from Table 7.

4.3. Static water resistance simulation of KCSmodels

In this article, the fluid dynamics simulation software STAR CCM+ is used to simulate the resistance
of the KCS model in calm water under towing conditions.

4.3.1. Computational domain and boundary conditions
Owing to the geometric symmetry of the ship model, only half of the hull and the flow domain is
used in the computational domain. Following the recommendations of International Towing Tank
Conference (ITTC, 2011), the inlet boundary is located 2.25LBP away from the stern, while the outlet
boundary is located 3LBP downstream to mitigate wave reflection from the boundaries. Taking cost
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Figure 13. Computational domain and boundary conditions.

Table 9. Summary of boundary conditions.

Boundary name Boundary condition

Inlet, top, bottom Velocity inlet
Hull No-slip wall condition
Symmetry, side Symmetry plane
Overset-side Overset mesh
Outlet Pressure outlet

considerations into account, the ultimately determined computational domain is depicted in Figure
13. The summary of the boundary conditions is presented in Table 9.

4.3.2. Mesh generation
The volumemesh uses a trimmed cell remesher to facilitate refinement in areas such as the free water
surface, wave systems and the ship hull by adjusting the control volumes with different mesh sizes.
The boundary layer is set to six layers, with a total thickness of 0.02m. In addition, overset mesh tech-
nology is used to accurately simulate the motion and attitude of the ship model. The generated global
mesh is illustrated in Figure 14, and the locally refined mesh around the hull is shown in Figure 15.

4.3.3. Numerical methods
Considering that there are no frequent turbulent eddies or pulsations during static water towing of the
ship, the Reynolds-averaged Navier–Stokes (RANS) equations are used to simulate turbulent flow in
the flow field, with the application of the Menter’s shear stress transport k-ω turbulence model. Con-
sidering time accuracy, the pressure-implicit with splitting of operators (PISO) algorithm is used to
solve the coupled equations of velocity and pressure. The dynamic fluid body interaction (DFBI)
method is used for the 2-degree-of-freedom (DoF), i.e. sinkage and trim, prediction of the ship,
while the volume of fluid (VOF) wave method is used for capturing the free liquid surface. Damp-
ing wave reflections are implemented to prevent wave reflections from the boundary and abrupt grid
transitions.
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Figure 14. Global mesh.

Figure 15. Locally refined mesh around the hull: (a) stern part; (b) bow part.

4.3.4. Independence verification
In this study, the non-dimensional total resistance coefficient CT will be used to analyse the accuracy
of the total resistance of the ship. CT is calculated using the following formula:

CT = FX
1
2ρU

2S
(15)

where FX is the total resistance measured in the X-direction in the Earth coordinate system. The
density of water (ρ) is 999.5 kg/m3, and the values of the remaining parameters in Equation (15)
are shown in Table 5. The simulated resistance iteration curve is shown in Figure 16. After sufficient
convergence has been achieved in the calculations, the last 10 samples of the time history are used to
calculate the average total resistance.

4.3.4.1. Time independence verification. Following the recommendations of ITTC (2011a), for the
calculation of resistance in calm water, the suggested time step is Δt = 0.005 ∼ 0.01LBPU . Rounding
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Figure 16. Simulated resistance iteration curve.

Table 10. Resistance results for differ-
ent time steps.

�t (s) CT Error (% of Experiment)

0.04 0.003647 −1.72
0.03 0.003682 −0.80
0.02 0.003704 −0.19
Experiment 0.003711 –

Table 11. Results for different grid schemes.

Scheme Total grid number (w) CT Error (% of Experiment)

Coarse 59.7 0.003762 1.37
Medium 82.4 0.003682 −0.80
Fine 144.2 0.003689 −0.59
Experiment – 0.003711 –

up, �t = 0.02–0.04 s was obtained. Table 10 presents the resistance results for different time steps
with a mesh count of 824,000, along with the towing tank experiment results in calm water for the
model conducted by Simonsen et al. (2013).

It can be observed that further reducing the time step beyond 0.03 s does not yield significant
improvements in accuracy. Considering the trade-off between accuracy and computational cost, a
time step of 0.03 s is chosen for the subsequent simulations.

4.3.4.2. Grid independence verification. In Table 11, the calculated results for three grid schemes
with �t = 0.03 s are listed to verify grid independence.

Compared with the experimental results, the errors in the results of both the medium and fine
grid schemes are each less than 1%, which is within an acceptable range for engineering applications.
Considering that themediumgrid scheme ismore efficient, the grid division in the subsequent studies
will be based on the settings of the medium grid. Tis also means that in the subsequent optimization
problem, the initial value of the resistance coefficient is chosen as 0.003682, and the initial value of
the resistance is selected as 41.874N.
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5. Optimization and analysis of KCSmodel

5.1. Optimization objective and constraints

The optimization objective of this study is to minimize the static water towing resistance of KCS.
The design variables X consist of 30 controlled parameters, and their ranges are specified in Table 7.
The design displacement, wetted surface area without rudder and longitudinal centre of buoyancy
of the ship are used as constraints, stipulating that their relative changes in the optimized ship do
not exceed 1% compared to the original ship. In summary, the mathematical expression of the ship’s
low-resistance optimization problem is as shown in Equation (16):

find X(x1, . . . , x30)
min RT(X) at Fr = 0.26

s.t.
|� − �opt(X)|

�
≤ 1%,

|S − Sopt(X)|
S

≤ 1%,
|LCB − LoptCB(X)|

LCB
≤ 1%

(16)

where the resistance RT is predicted using the surrogate model; �, S and LCB represent the design
displacement, wetted surface area without rudder and longitudinal centre of buoyancy of the original
ship, calculated as 1.6492 m3, 9.52259 m2 and 48.46(%LBP), respectively, using STAR-CAD software;
and �opt(X), Sopt(X) and LoptCB(X) represent the corresponding values of the optimized ship.

5.2. Ship resistance sampling and construction of surrogatemodels

The entire process of FFD, simulation and sequential modelling was implemented through C#, Java
and Python programs developed in this study, as illustrated in Figure 17. The simulations in this arti-
cle were performed using an Intel

R©
CoreTM i9-9820X CPU@ 3.30GHz processor for 10-core parallel

computing. Owing to varying convergence times for each simulation, the runtime is determined by
the number of iterations. Specifically, the average runtime for 20,000 iterations is around 2.7 h. There-
fore, considering both the collection time of sample points and the accuracy of the model, when the
relative error between the predicted value and the true value of new sample points is less than 2%
(usually taken as 1%), it is considered that the ensemble surrogate model has converged. According
to this setting, 303 sample points were collected during the construction of the first-order HDMR
model, and 184 sample points were collected during the construction of the second-order HDMR
model. Fifty validation points were collected at once through optimized Latin hypercube sampling.
Thus, the total simulation time is approximately 537 ∗ 2.7 h = 1449.9 h.

To assess the predictive performance of the PWPV-HDMR, kriging-HDMR, PRS-HDMR, SVR-
HDMR and kriging models, all constructed with the same sample points, the results are shown
in Figure 18 and Table 12. It can be observed that the HDMR models, especially the PWPV-
HDMR model, outperformed the kriging model globally and locally. The kriging-HDMR achieved
the second-best performance among most indicators, excluding the local prediction metric RMAE.
Therefore, in the next section, the optimization algorithm will be applied to the PWPV-HDMR
model, with the second-best kriging-HDMRmodel used for comparison.

5.3. Analysis of design optimization results

The DE algorithm is a highly useful global optimization algorithm that seeks the global optimum
through the competition and cooperation among individuals. Previous studies (Gong, Cai, and Liang
2014; Mallipeddi et al. 2011; Qin, Huang, and Suganthan 2008) show that the DE algorithm performs
well in handling high-dimensional optimization problems, and some research (Brizzolara, Bruzzone,
andTincani 2005; L.Wang et al. 2015) has also applied it to the design of ship forms. TheDE algorithm
is used to seek the optimal solution, and its basic parameter settings are shown in Table 13.
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Figure 17. Flowchart of the construction of the resistance prediction surrogate model for the KRISO Container Ship (KCS) model.

Table 12. Performance of the five models for resistance prediction.

Surrogates R2 RRMSE RMAE RAAE

PWPV-HDMR 8.24E-01 5.35E-01 1.09E+00 3.35E-01
Kriging-HDMR 6.96E-01 5.36E-01 1.43E+00 3.87E-01
PRS-HDMR 4.69E-01 7.29E-01 1.48E+00 4.27E-01
SVR-HDMR 6.16E-01 6.89E-01 1.26E+00 4.01E-01
Kriging −2.14E+00 1.52E+00 1.70E+00 1.13E+00

Note: Best results are shown in bold; worst results in italic.
PWPV-HDMR = pointwise weighting prediction variance–high-dimensional model representation; HDMR = high-dimensional
model representation; PRS = polynomial response surface; SVR = support vector regression; R2 = coefficient of determina-
tion; RRMSE = relative root mean square error; RMAE = relative maximum absolute error; RAAE = relative average absolute
error; NOP = number of sample points.

Table 13. Optimization parameters of
the KRISO Container Ship (KCS).

Parameter Value

Population 300
Maximum iteration 1000
Crossover rate 0.3
Mutation rate 0.8

To ensure the robustness of the optimization results, the optimization process based on the PWPV-
HDMR and kriging-HDMR models was repeated 100 times, with the minimum resistance result
selected from each set as the final optimization result. The optimization results based on PWPV-
HDMR are referred to as ‘Opt-PH’ and those based on kriging-HDMR are referred to as ‘Opt-KH’,
with specific controlled parameter values shown in Tables 14 and 15. The resistance prediction results
for ‘Opt-PH’ and ‘Opt-KH’ are 39.8553 (1.5751× 10−3) and 39.7863 (3.8306× 10−3) respectively,
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Figure 18. Performance of the five models for resistance prediction. PWPV-HDMR = pointwise weighting prediction
variance–high-dimensional model representation; HDMR = high-dimensional model representation; PRS = polynomial
response surface; SVR = support vector regression; R2 = coefficient of determination; RRMSE = relative root mean square error;
RMAE = relative maximum absolute error; RAAE = relative average absolute error.

Table 14. Optimization results using thepointwiseweightingprediction variance–high-dimensionalmodel representation (PWPV-
HDMR) model (Opt-PH).

Design
parameter

Controlled
parameter

1

Controlled
parameter

2

Controlled
parameter

3

Controlled
parameter

4

Controlled
parameter

5

Controlled
parameter

6

Hull length −0.0041 −0.0075 0.01 −0.0013 −0.0087 0.0013
Designed waterline
width

0.002 0.0006 −0.0013 −0.0023 −0.008 −0.0075

Bilge width −0.0013 0.0044 0.0025 0.0022 −0.0057 −0.01
Bulbous bow −0.0025 −0.0088 −0.0014 0.0027 0.0081 −0.0006
Stern part 0.0025 −0.0075 0.0057 0.0063 −0.0025 0.0029

Table 15. Optimization results using the kriging–high-dimensional model representation (HDMR) model (Opt-KH).

Design
parameter

Controlled
parameter

1

Controlled
parameter

2

Controlled
parameter

3

Controlled
parameter

4

Controlled
parameter

5

Controlled
parameter

6

Hull length −0.0043 −0.0075 0.01 −0.0013 0.0013 0.0015
Designed waterline
width

0.0063 0.0013 −0.0017 −0.0042 −0.0025 −0.0079

Bilge width −0.0013 0.005 0.0025 0.0013 −0.0063 −0.01
Bulbous bow −0.0025 −0.009 −0.0012 0.0013 0.0081 −0.0009
Stern part 0.0027 −0.0075 0.0015 0.0069 −0.0025 −0.0031

where the values in parentheses represent the standard deviation. It can be observed that the opti-
mization results for both are relatively robust. The comparison of the transverse hull lines between
the two optimized ship models and the mother ship model is shown in Figure 19.

Combining Figure 19 andTable 14, it can be observed that, in terms of local changes, the optimized
ship model Opt-PH exhibits a noticeable forward movement and sharpening at the front end of the
bulbous bow compared to themother shipmodel. The rear end of the bulbous bow, on the other hand,
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Figure 19. Comparison of the transverse hull lines between themother ship and the optimized ship: (a) optimization results based
on pointwise weighting prediction variance–high-dimensional model representation (Opt-PH); (b) optimization results based on
kriging–high-dimensional model representation (Opt-KH).

widens. Towards the stern, there is a trend of expansion followed by contraction along the bow to stern
direction. In terms of global changes, considering the prominent changes in length and designed
waterline width, the front half of the hull shows a certain forward movement and widening at the
bow and entrance part, while the forward shoulder part experiences some backward movement and
narrowing. In the rear half of the hull, the after shoulder part and run part exhibit forwardmovement
and contraction, while the stern experiences some backward movement and contraction. For the less
pronounced bilge width direction of the hull, along the bow to stern, it primarily shows a trend of
widening followed by narrowing.

Combining Figure 19 and Table 15, it can be seen that, in terms of local changes, the trends of Opt-
KH are generally consistent with those of Opt-PH, but Opt-KH tends to be smaller in the bulbous
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Table 16. Comparison of optimization results based on pointwise weighting prediction variance–high-dimensional model repre-
sentation (Opt-PH) and kriging–high-dimensional model representation (Opt-KH).

ROpt - PHT ROpt - KHT �Opt - PH �Opt - KH SOpt - PH SOpt - KH LOpt - PHCB LOpt - KHCB

Prediction 39.8553 39.7863 – – – – – –
Simulation 40.4293 40.8273 1.6509 1.6392 9.5940 9.4791 48.31 48.09
Error (%) 1.42 2.55 – – – – – –
R0T − RT

R0T
× 100% 3.5 2.5 – – – – – –

|� − �opt|
�

× 100% – – 0.11 0.60 – – – –

|S − Sopt|
S

× 100% – – – – 0.75 0.46 – –

|LCB−LoptCB |
LCB

× 100% – – – – – – 0.30 0.76

Note: R0T = 41.874N

bow part and larger in the stern part compared to Opt-PH. In terms of global changes, except for the
run part, there is little difference between the two in the length and bilge width directions, while in
the designed waterline width direction, Opt-KH exhibits the same trend as Opt-PH but with more
pronounced changes.

Using STAR-CCM+ to validate the optimized ship models mentioned above, the obtained results
are shown in Table 16. First, it can be observed that the resistance value of both optimized shipmodels
is lower than that of the mother ship. Furthermore, the design displacement, wetted surface area
without rudder and longitudinal centre of buoyancy of the optimized shipmodelsmeet the constraint
conditions. Secondly, although the resistance prediction result of Opt-KH is lower than that of Opt-
PH, the actual simulation results are opposite: the optimization effect of the Opt-PH ship model is
3.5%, surpassing that of the Opt-KH ship model (2.5%), leading to a reduction in resistance of nearly
1.0%. Overall, it can be considered that both the PWPV-HDMR and kriging-HDMR models can
be applied to the KCS resistance optimization problem, but the PWPV-HDMR model gives better
prediction accuracy and optimization results.

Figure 20 shows the free surface wave elevations of the two optimized ship models and the mother
ship under the same operating conditions and physical time. In general, the bow wave system of the
two optimized ship models, compared to the mother ship, exhibits a slight forward movement near
the bow (region 1), but with little change in amplitude. Starting from the entrance part and extending
to the region far from the stern, both the amplitude and area of the wave peaks and troughs have
decreased. The difference between the two optimized ship models is that the forward movement of
the bow wave system of the Opt-PH ship model is smaller, and, except in the area very close to the
stern (region 2), the wave peak areas are smaller in other regions.

Figures 21–23 show the pressure distribution comparisons of the two optimized ship models and
the mother ship for the entire ship, bow and stern, respectively. In general, the areas of high- and
low-pressure regions for both optimized ship models are reduced compared to the mother ship in
most regions. The Opt-PH ship model has the smallest areas of high- and low-pressure regions in the
bow, entrance part, forward shoulder part and after shoulder part. However, the difference between
Opt-PH and Opt-KH is not significant in the run part, and in the stern, the area is larger for Opt-PH
than for Opt-KH.

Considering the results of the comprehensive analysis, it can be concluded that the pressure dis-
tribution and wave pattern of the Opt-PH ship model are generally better than those of the Opt-KH
ship model and the parent ship, except for the stern part, where the pressure distribution is slightly
inferior to that of the Opt-KH ship model. To further reduce ship resistance, it may be worthwhile to
explore local optimization of the stern region in future work.
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Figure 20. Comparison of the wave elevation of different hulls: (a) optimization results based on pointwise weighting predic-
tion variance–high-dimensional model representation (Opt-PH) and initial hulls; (b) optimization results based on kriging–high-
dimensional model representation (Opt-KH) and initial hulls.

6. Conclusions and future work

This article introduces a ship design optimization method especially for high-dimensional design
variables. First, a pointwise weighted combination high-dimensional surrogate model based on pre-
diction variance, called PWPV-HDMR, is proposed. This method is used to establish the relationship
between ship hull parameters and hydrodynamic performance in ship design optimization. Subse-
quently, using PWPV-HDMR as the fitness function, the DE algorithm is introduced to identify
promising ship hull parameters. The proposedmethod has been validated in determining the param-
eters of a low-resistance ship hull in static water towing for the KCS. The main conclusions of this
study are as follows.

(1) During the high-dimensional numerical study, the proposed PWPV-HDMRmethod exhibits
good robustness and achieves comparable or superior approximation performance compared
to the best basic HDMR models across different dimensionalities. This indicates that using
PWPV-HDMR can reduce the risk of constructing inappropriate basis functions.

(2) During the optimization and simulation validation process, the PWPV-HDMR model has a
greater effect and higher accuracy than the kriging-HDMR model. This highlights the supe-
riority of the PWPV-HDMRmodel in high-dimensional optimization problems compared to
basic HDMRmodels and kriging models.
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Figure 21. Pressure distribution for the entire ship. Opt-PH = optimization results based on pointwise weighting prediction
variance–high-dimensional model representation model; Opt-KH = optimization results based on kriging–high-dimensional
model representation.

Figure 22. Pressure distribution for the bow. Opt-PH = optimization results based on pointwise weighting prediction
variance–high-dimensional model representation model; Opt-KH = optimization results based on kriging–high-dimensional
model representation.

Figure 23. Pressure distribution for the stern. Opt-PH = optimization results based on pointwise weighting prediction
variance–high-dimensional model representation model; Opt-KH = optimization results based on kriging–high-dimensional
model representation.
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During ship design optimization, a precise PWPV-HDMRmodel is first constructed, and thenDE
is used for optimization based on this model. However, this approach may lead to the arrangement
of useless sampling points near the non-optimal point, which will affect the efficiency of optimiza-
tion. For future research, it is crucial to explore optimization methods that dynamically update the
surrogate model during the optimization process.
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Appendix A
The expressions for numerical test cases of different dimensions are shown in Tables A1–A4.

Table A1. 10-dimensional numerical test cases.

No. Expression Design space

1 f (x) =
D∑
i=1

(x2i − 10 cos(2 ∗ pi ∗ xi) + 10) xi ∈ [−1, 1]

2 f (x) =
D∑
i=1

x2i +
(
1

2

D∑
i=1

ixi

)2

+
(
1

2

D∑
i=1

ixi

)4

xi ∈ [−10, 10]

3 f (x) =
D∑
i=1

{ln(xi − 2))2 + (ln(10 − xi))
2} +

(
D∏
i=1

xi

)0.2

xi ∈ [2.1, 9.9]

4 f (x) =
10∑
i=1

xi

⎛
⎜⎜⎜⎝ci + ln

xi
10∑
i=1

xi

⎞
⎟⎟⎟⎠ xi ∈ [1e−6, 10]

5 f (x) = 1 +
D∑
i=1

(xi − 100)2

4000
−

D∏
i=1

cos

(
(xi − 100)2

4000

)
xi ∈ [−600, 600]

Note: c1≤i≤10 = −6.089,−17.164,−34.054,−5.914,−24.721,−14.986,−24.1,−10.708,−26.662,−22.179.

Appendix B

B.1 10-dimensional results
The bar chart in Figure B1 illustrates the modelling accuracy results for the five 10-dimensional numerical test cases. It
can be observed that the modelling accuracy of the PWPV-HDMRmodel is generally the best, while the kriging model
consistently performs the worst in cases 1 and 5. Among the three basic HDMRmodels, kriging-HDMR performs the
best in case 4, PRS-HDMR excels in cases 3 and 5, and SVR-HDMR performs the best in case 1. This indicates that
these three models have their strengths and weaknesses, justifying the significance of composing a combined surrogate
model.

From the line chart in Figure B1, the following is evident. (1) For cases 1 and 5, where the four error metrics of
the three basic HDMR models are significantly better than those of the kriging model, it is logical to conclude that
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Table A2. 20-dimensional numerical test cases.

No. Expression Design space

6 f (x) =
D∑
i=1

(x2i − 10 cos(2 ∗ pi ∗ xi) + 10) xi ∈ [−1, 1]

7 f (x) = (x1 − 1)2 +
20∑
i=2

i(2x2i − xi−1)
2

xi ∈ [−10, 10]

8 f (x) =
D∑
i=1

{ln(xi − 2))2 + (ln(10 − xi))
2} +

(
D∏
i=1

xi

)0.2

xi ∈ [2.1, 9.9]

9 f (x) =
19∑
i=1

[100(xi+1 − xi
2)

2 + (xi − 1)2] xi ∈ [−2.1, 2.1]

Table A3. 30-dimensional numerical test cases.

No. Expression Design space

10 f (x) =
D∑
i=1

(x2i − 10 cos(2 ∗ pi ∗ xi) + 10) xi ∈ [−1, 1]

11 f (x) =
D∑
i=1

{ln(xi − 2))2 + (ln(10 − xi))2} +
(

D∏
i=1

xi

)0.2

xi ∈ [2.1, 9.9]

12 f (x) = 1 +
D∑
i=1

(xi−100)2

4000 −
D∏
i=1

cos
(

(xi−100)2

4000

)
xi ∈ [−600, 600]

Table A4. 40-dimensional numerical test cases.

No. Expression Design space

13 f (x) =
D∑
i=1

(x2i − 10 cos(2 ∗ pi ∗ xi) + 10) xi ∈ [−1, 1]

14 f (x) =
D∑
i=1

{ln(xi − 2))2 + (ln(10 − xi))
2} +

(
D∏
i=1

xi

)0.2

xi ∈ [2.1, 9.9]

15 f (x) = 1 +
D∑
i=1

(xi − 100)2

4000
−

D∏
i=1

cos

(
(xi − 100)2

4000

)
xi ∈ [−600, 600]

the PWPV-HDMR model is superior to kriging. (2) For cases 2 and 3, the three basic HDMR models show minimal
improvement over the kriging model, and perform worse than the kriging model in the RAAE metric. Consequently,
the PWPV-HDMR model exhibits a similar trend. (3) In case 4, both PRS-HDMR and SVR-HDMR models per-
form worse than the kriging model, but the PWPV-HDMRmodel clearly learns the characteristics of kriging-HDMR,
achieving better results than kriging in terms of RRMSE and RAAE metrics.

B.2 20-dimensional results
The bar chart in Figure B2 illustrates the modelling accuracy results for the four 20-dimensional numerical test cases.
It can be observed that the results of the PWPV-HDMR model are consistently the closest or directly the best, while
the results of the kriging model are mostly the worst. Among the three basic HDMRmodels, kriging-HDMR performs
the best in case 7, PRS-HDMR excels in cases 8 and 9, and SVR-HDMR performs the best in case 6, with PRS-HDMR
having a slightly better overall performance.

From the line chart in Figure B2, the following is evident. (1) In cases 6, 7 and 8, the PWPV-HDMR model is the
best. (2) In case 9, the PRS-HDMRmodel is the best, but the gap between the PRS-HDMR and PWPV-HDMRmodels
is minimal. This indicates that the PWPV-HDMRmodel has the ability to learn from the best-performing basic HDMR
models, but may not always surpass them.
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Table B1. Comparative results of the modelling accuracy (10 dimensions).

Function Surrogates R2 RRMSE RMAE RAAE NOP

1 PWPV-HDMR 9.99E-01 2.36E-02 7.87E-02 1.89E-02 81+ 47
Kriging-HDMR 9.95E-01 7.14E-02 2.41E-01 5.78E-02
PRS-HDMR 9.07E-01 3.06E-01 9.58E-01 2.49E-01
SVR-HDMR 9.99E-01 2.35E-02 8.03E-02 1.88E-02
Kriging −5.14E-01 1.23E+00 3.36E+00 1.01E+00 128

2 PWPV-HDMR 5.37E-01 6.80E-01 8.93E+00 2.97E-01 61+ 182
Kriging-HDMR 4.88E-01 7.16E-01 9.20E+00 3.32E-01
PRS-HDMR 4.54E-01 7.39E-01 9.11E+00 4.04E-01
SVR-HDMR 3.26E-01 8.21E-01 9.97E+00 2.71E-01
Kriging 4.38E-01 7.49E-01 9.71E+00 2.25E-01 243

3 PWPV-HDMR 9.42E-01 2.41E-01 8.96E-01 1.86E-01 81+ 182
Kriging-HDMR 9.26E-01 2.73E-01 1.43E+00 2.11E-01
PRS-HDMR 9.32E-01 2.60E-01 8.13E-01 2.15E-01
SVR-HDMR 8.50E-01 3.88E-01 1.24E+00 3.15E-01
Kriging 9.09E-01 3.02E-01 1.87E+00 2.29E-01 263

4 PWPV-HDMR 9.99E-01 6.13E-03 4.14E-02 3.62E-03 41+ 2
Kriging-HDMR 9.99E-01 8.33E-03 4.92E-02 5.03E-03
PRS-HDMR 9.40E-01 2.45E-01 9.67E-01 1.96E-01
SVR-HDMR 9.94E-01 7.95E-02 2.95E-01 6.34E-02
Kriging 9.99E-01 1.29E-02 4.05E-02 1.07E-02 43

5 PWPV-HDMR 9.99E-01 2.42E-02 4.93E-02 2.29E-02 51+ 2
Kriging-HDMR 9.99E-01 2.43E-02 4.93E-02 2.30E-02
PRS-HDMR 9.99E-01 3.02E-02 6.36E-02 2.86E-02
SVR-HDMR 9.85E-01 1.23E-01 3.78E-01 1.06E-01
Kriging 2.31E-01 8.75E-01 2.72E+00 6.87E-01 53

Note: Best results are shown in bold; worst results in italic.
PWPV-HDMR = pointwise weighting prediction variance–high-dimensional model representation; HDMR = high-dimensional
model representation; PRS = polynomial response surface; SVR = support vector regression; R2 = coefficient of determina-
tion; RRMSE = relative root mean square error; RMAE = relative maximum absolute error; RAAE = relative average absolute
error; NOP = number of sample points.

Table B2. Comparative results of the modelling accuracy (20 dimensions).

Function Surrogate R2 RRMSE RMAE RAAE NOP

6 PWPV-HDMR 9.98E-01 4.90E-02 1.34E-01 4.04E-02 141+ 2
Kriging-HDMR 9.75E-01 1.58E-01 3.94E-01 1.36E-01
PRS-HDMR 7.20E-01 5.27E-01 1.28E+00 4.69E-01
SVR-HDMR 9.97E-01 5.25E-02 1.29E-01 4.53E-02
Kriging −3.72E+01 6.18E+00 9.17E+00 6.09E+00 143

7 PWPV-HDMR 9.54E-01 2.15E-01 6.45E-01 1.72E-01 161+ 249
Kriging-HDMR 9.40E-01 2.45E-01 8.21E-01 2.07E-01
PRS-HDMR 8.95E-01 3.23E-01 1.28E+00 2.55E-01
SVR-HDMR 8.70E-01 3.60E-01 1.42E+00 2.85E-01
Kriging 8.24E-01 4.19E-01 1.70E+00 3.32E-01 410

8 PWPV-HDMR 9.74E-01 1.62E-01 1.26E+00 8.58E-02 121+ 762
Kriging-HDMR 9.63E-01 1.91E-01 1.45E+00 1.02E-01
PRS-HDMR 9.71E-01 1.70E-01 1.29E+00 1.07E-01
SVR-HDMR 8.91E-01 3.30E-01 1.69E+00 2.66E-01
Kriging 9.20E-01 2.82E-01 1.29E+00 2.09E-01 883

9 PWPV-HDMR 1.00E+00 9.69E-16 3.30E-15 7.47E-16 141+ 762
Kriging-HDMR 9.89E-01 1.07E-01 3.02E-01 8.64E-02
PRS-HDMR 1.00E+00 9.68E-16 3.29E-15 7.46E-16
SVR-HDMR 8.66E-01 3.64E-01 1.05E+00 2.94E-01
Kriging 1.72E-01 9.10E-01 4.86E+00 7.01E-01 903

Note: Best results are shown in bold; worst results in italic.
PWPV-HDMR = pointwise weighting prediction variance–high-dimensional model representation; HDMR = high-dimensional
model representation; PRS = polynomial response surface; SVR = support vector regression; R2 = coefficient of determina-
tion; RRMSE = relative root mean square error; RMAE = relative maximum absolute error; RAAE = relative average absolute
error; NOP = number of sample points.
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Figure B1. Modelling accuracy and relative improvement of pointwise weighting prediction variance–high-dimensional model
representation (PWPV-HDMR) (10 dimensions): (a) function no. 1; (b) function no. 2; (c) function no. 3; (d) function no. 4; (e)
function no. 5. HDMR = high-dimensional model representation; PRS = polynomial response surface; SVR = support vector
regression; R2 = coefficient of determination; RRMSE = relative root mean square error; RMAE = relative maximum absolute
error; RAAE = relative average absolute error.
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Figure B2. Modelling accuracy and relative improvement of pointwise weighting prediction variance–high-dimensional model
representation (PWPV-HDMR) (20 dimensions): (a) function no. 6; (b) function no. 7; (c) function no. 8; (d) function no.
9. HDMR = high-dimensional model representation; PRS = polynomial response surface; SVR = support vector regression;
R2 = coefficient of determination; RRMSE = relative root mean square error; RMAE = relative maximum absolute error;
RAAE = relative average absolute error.
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